来自孙劦骘的问题
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,f'(a)×f'(b)>0,证明:存在c,使得f''(c)=f(c)
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,
f'(a)×f'(b)>0,证明:存在c,使得f''(c)=f(c)
1回答
2020-12-25 02:55
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,f'(a)×f'(b)>0,证明:存在c,使得f''(c)=f(c)
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,
f'(a)×f'(b)>0,证明:存在c,使得f''(c)=f(c)
不妨设f'(a)>0,由f'(x)可导故连续,f’(x)在a的一个邻域内>0.
f(x)在a的一个邻域内严格增,在其中有f(x)>f(a)=0.
同理,在b的一个邻域内有f(x)