函数有界且可导设函数y=f(x)在(0,正无穷)内有界且可导-查字典问答网
分类选择

来自唐棠的问题

  函数有界且可导设函数y=f(x)在(0,正无穷)内有界且可导,则当x趋向正无穷时,limf'(x)存在时,必有lim(x趋向正无穷)f'(x)=0为什么呢?

  函数有界且可导

  设函数y=f(x)在(0,正无穷)内有界且可导,则

  当x趋向正无穷时,limf'(x)存在时,必有lim(x趋向正无穷)f'(x)=0

  为什么呢?

1回答
2020-12-24 18:58
我要回答
请先登录
卢云富

  因为y=f(x)在(0,+∞)有界,故limf(x)=c(一个常数),

  x→+∞

  所以limf'(x)=0

  x→+∞

2020-12-24 18:58:54

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •