设函数f(x)具有二阶导数,且f(x)二阶倒大于0,证明:f-查字典问答网
分类选择

来自江军的问题

  设函数f(x)具有二阶导数,且f(x)二阶倒大于0,证明:f(a+h)+f(a-h)≥2f(a)别人告诉我是用导数的定义做,lim(h趋近于0)=[f(a+h)-f(a)]/h=f`(a)和lim(h趋近于0)=[f(a-h)-f(a)]/(-h)=f`(a),做,但我没明白.如何把[f(a+h)-

  设函数f(x)具有二阶导数,且f(x)二阶倒大于0,证明:f(a+h)+f(a-h)≥2f(a)

  别人告诉我是用导数的定义做,lim(h趋近于0)=[f(a+h)-f(a)]/h=f`(a)和lim(h趋近于0)=[f(a-h)-f(a)]/(-h)=f`(a),做,但我没明白.如何把[f(a+h)-f(a)]/h和f(a-h)-f(a)]/(-h)从极限里面弄出来的?

  求正解!谢谢

1回答
2020-12-24 13:21
我要回答
请先登录
郝玉龙

  正解是中值定理,这里不好打符号

  参与资料中有详解

2020-12-24 13:26:46

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •