设f(x)在x=x0的邻近有连续的二阶导数,证明;limh→-查字典问答网
分类选择

来自孙友义的问题

  设f(x)在x=x0的邻近有连续的二阶导数,证明;limh→0f(x0+h)+f(x0-h)-2f(x0)/h²=f″(x0).不要用洛必达法则.

  设f(x)在x=x0的邻近有连续的二阶导数,证明;limh→0f(x0+h)+f(x0-h)-2f(x0)/h²=f″(x0).

  不要用洛必达法则.

1回答
2020-12-25 09:50
我要回答
请先登录
冯成龙

  用微分公式,其中的有限增量公式,由于f(x)在x0邻域二阶可导,必定一阶可导,因此有f(x0+h)-f(x0)=f'(x0)h+o(h).同理f(x0)-f(x0-h)=f'(x0)h+o(h).因此f(x0+h)+f(x0-h)-2f(x0)/h²={[f(x0+h)-f(x0)]/h+[f(x0)-f(x0-h)]/h}/h,代入上式并取极限,即可证明

2020-12-25 09:54:00

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •