来自葛巧溢的问题
f(x)在R可导且f'(x)+f(x)>0.证明方程f(x)=0最多只有几个实根.
f(x)在R可导且f'(x)+f(x)>0.证明方程f(x)=0最多只有几个实根.
1回答
2020-12-27 05:25
f(x)在R可导且f'(x)+f(x)>0.证明方程f(x)=0最多只有几个实根.
f(x)在R可导且f'(x)+f(x)>0.证明方程f(x)=0最多只有几个实根.
考察函数
g(x)=e^x·f(x)
g'(x)=e^x·[f(x)+f'(x)]>0
∴g(x)=0最多一个实根
∴f(x)=0也最多一个实根