来自方祖祥的问题
设f(x)在x=0的某领域内二阶可导,且limx→0(sin3xx3+f(x)x2)=0,求f(0),f′(0),f″(0)及limx→0f(x)+3x2.
设f(x)在x=0的某领域内二阶可导,且limx→0(sin3xx3+f(x)x2)=0,求f(0),f′(0),f″(0)及limx→0f(x)+3x2.
1回答
2020-12-27 06:25
设f(x)在x=0的某领域内二阶可导,且limx→0(sin3xx3+f(x)x2)=0,求f(0),f′(0),f″(0)及limx→0f(x)+3x2.
设f(x)在x=0的某领域内二阶可导,且limx→0(sin3xx3+f(x)x2)=0,求f(0),f′(0),f″(0)及limx→0f(x)+3x2.
因为:limx→0(sin3xx3+f(x)x2)=limx→0sin3x+xf(x)x3=limx→0sin3xx+f(x)x2=0,
所以:limx→0(sin3xx+f(x))=0.
又:f(x)在x=0的某领域内二阶可导,
所以:f(x),f′(x)在x=0连续,
从而:f(0)=-3.
由limx→0sin3xx+f(x)x2=0,
得:limx→0sin3xx−3+f(x)+3x2=0,
又易知:limx→03−sin3xxx2=limx→0sin3xx36=limx→0sin3xx38=limx→0f(x)x20=f(x)x21,
故:limx→0f(x)x23=f(x)x21,
从而:f′(0)=limx→0f(x)x26=limx→0f(x)x28=limx→0x•f(x)x23=0×f(x)x21=0,
将f(x)在x=0处泰勒展开,并由limx→0f(x)x23=f(x)x21得:
limx→0limx→06f″(0)x2+0(x2)+3x2=f(x)x21,
计算得:limx→08f″(0)=