来自黄安贻的问题
(2014•湖南)如图,O为坐标原点,椭圆C1:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2:x2a2-y2b2=1的左、右焦点分别为F3,F4,离心率为e2,已知e1e2=32,且|F2F4|=3-1.
(2014•湖南)如图,O为坐标原点,椭圆C1:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2:x2a2-y2b2=1的左、右焦点分别为F3,F4,离心率为e2,已知e1e2=
32,且|F2F4|=
3-1.
(Ⅰ)求C1、C2的方程;
(Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.
1回答
2020-12-28 05:28