matlab求解微分方程的通解问题解某微分方程:x^2*D2-查字典问答网
分类选择

来自蒋跃元的问题

  matlab求解微分方程的通解问题解某微分方程:x^2*D2y+x*Dy+(x^2-1/2)*y=0,初值:y(pi/2)=2,Dy(pi/2)=-2/pi,书本标准答案为:ans=2^(1/2)*pi*^(1/2)/x^(1/2)*sin(x);但我运行:dsolve('x^2*D2y+x*Dy+(x^2-1/2)*y=0','y(pi/2)=2,Dy(p

  matlab求解微分方程的通解问题

  解某微分方程:x^2*D2y+x*Dy+(x^2-1/2)*y=0,初值:y(pi/2)=2,Dy(pi/2)=-2/pi,书本标准答案为:

  ans=2^(1/2)*pi*^(1/2)/x^(1/2)*sin(x);

  但我运行:dsolve('x^2*D2y+x*Dy+(x^2-1/2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')

  ans=

  (2*bessely(-2^(1/2)/2,x)*(2^(1/2)*besselj(-2^(1/2)/2,pi/2)-besselj(-2^(1/2)/2,pi/2)+pi*besselj(1-2^(1/2)/2,pi/2)))/(pi*(besselj(1-2^(1/2)/2,pi/2)*bessely(-2^(1/2)/2,pi/2)-bessely(1-2^(1/2)/2,pi/2)*besselj(-2^(1/2)/2,pi/2)))-(2*besselj(-2^(1/2)/2,x)*(2^(1/2)*bessely(-2^(1/2)/2,pi/2)-bessely(-2^(1/2)/2,pi/2)+pi*bessely(1-2^(1/2)/2,pi/2)))/(pi*(besselj(1-2^(1/2)/2,pi/2)*bessely(-2^(1/2)/2,pi/2)-bessely(1-2^(1/2)/2,pi/2)*besselj(-2^(1/2)/2,pi/2)))

  即使我simpify(ans),j结果还是一样,怎么回事啊?

1回答
2020-12-27 20:57
我要回答
请先登录
韩永

  symsxy

  y=sqrt(2*pi/x)*sin(x);y1=diff(y,'x');y2=diff(y,'x',2);

  h=x^2*y2+x*y1+(x^2-1/2)*y;h=simplify(h)

  结果:

  h=

  -1/4/x*2^(1/2)*sin(x)*pi^(1/2)/(1/x)^(1/2)

  可见不等于0,=y,说明原答案有问题

2020-12-27 21:01:50

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •