来自罗勇胜的问题
【用拉普拉斯变换求积分方程的解求y(t)+∫y(t-u)(e^u)du(积分限0->t)=2t-3的解.我主要是定积分不知道如何处理,麻烦点拨一下.】
用拉普拉斯变换求积分方程的解
求y(t)+∫y(t-u)(e^u)du(积分限0->t)=2t-3的解.我主要是定积分不知道如何处理,麻烦点拨一下.
1回答
2020-12-28 01:14
【用拉普拉斯变换求积分方程的解求y(t)+∫y(t-u)(e^u)du(积分限0->t)=2t-3的解.我主要是定积分不知道如何处理,麻烦点拨一下.】
用拉普拉斯变换求积分方程的解
求y(t)+∫y(t-u)(e^u)du(积分限0->t)=2t-3的解.我主要是定积分不知道如何处理,麻烦点拨一下.
积分方程需要转化为微分方程来求解
两边需对t求导,需要先把那个积分整理一下.
∫[0→t]y(t-u)e^udu
令t-u=x,则,du=-dx,x:t→0
=∫[t→0]y(x)e^(t-x)d(-x)
=∫[0→t]y(x)e^(t-x)dx
=e^t∫[0→t]y(x)e^(-x)dx
这样积分方程化为:
y(t)+e^t∫[0→t]y(x)e^(-x)dx=2t-3(1)
两边除以e^t得:
y(t)e^(-t)+∫[0→t]y(x)e^(-x)dx=(2t-3)e^(-t)
两边对t求导得:
y'(t)e^(-t)-y(t)e^(-t)+y(t)e^(-t)=2e^(-t)-(2t-3)e^(-t)
即:y'(t)=2-(2t-3)
这样我们得到一个微分方程
将t=0代入(1)得:y(0)=-3,这是初始条件,这样一个积分方程就化为微分方程初值问题了.
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.