来自李翼的问题
设f(x)在x处有n阶导数,且f'(x0)=f''(x0)=…=f^(n-1)(x0)=0,f^(n)(x)≠0,当n为奇数时,f(x)在x0处不取得极值,在n为偶数时在x0处取得极值证,当n为奇数时,f(x)在x0处不取得极值,在n为偶数时在x0处取得极值
设f(x)在x处有n阶导数,且f'(x0)=f''(x0)=…=f^(n-1)(x0)=0,f^(n)(x)≠0,当n为奇数时,f(x)在x0处不取得极值,在n为偶数时在x0处取得极值
证,当n为奇数时,f(x)在x0处不取得极值,在n为偶数时在x0处取得极值
1回答
2020-12-28 18:30