来自吕庆风的问题
已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=(3n^2)an+S(n-1)^2已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=3n^2*an+S(n-1)^2,an不等于0,n=2,3,4…(1)证明:数列{
已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=(3n^2)an+S(n-1)^2
已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=3n^2*an+S(n-1)^2,an不等于0,n=2,3,4…
(1)证明:数列{b(n+2)/bn}(n>=2)是常数数列
(2)确定a的取值集合M,使a属于M时,数列{an}是单调递增数列
1回答
2020-12-28 21:15