已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn-查字典问答网
分类选择

来自吕庆风的问题

  已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=(3n^2)an+S(n-1)^2已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=3n^2*an+S(n-1)^2,an不等于0,n=2,3,4…(1)证明:数列{

  已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=(3n^2)an+S(n-1)^2

  已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=3n^2*an+S(n-1)^2,an不等于0,n=2,3,4…

  (1)证明:数列{b(n+2)/bn}(n>=2)是常数数列

  (2)确定a的取值集合M,使a属于M时,数列{an}是单调递增数列

1回答
2020-12-28 21:15
我要回答
请先登录
陈彦萼

  (1)证明:b(n+2)/bn=e^a(n+2)/e^an=e^[a(n+2)-an]要证明{b(n+2)/bn}为常数数列,只需证a(n+2)-an为常数;∵Sn^2=3n^2*an+S(n-1)^2∴Sn^2-S(n-1)^2=[Sn+S(n-1)][Sn-S(n-1)]=[Sn+S(n-1)]*an=3n^2*an∴Sn+S(n-1)=3n^2…...

2020-12-28 21:16:03

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •