j附带例题-查字典问答网
分类选择

来自李存军的问题

  j附带例题

  j附带例题

1回答
2019-11-22 13:04
我要回答
请先登录
何爱军

  符号思想

  用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容,这就是符号思想.符号思想是将所有的数据实例集为一体,把复杂的语言文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用.把客观存在的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表象再抽象符号化的过程.

  用符号来体现的数学语言是世界性语言,是一个人数学素养的综合反映.

  在数学中各种量的关系,量的变化以及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式来表达大量的信息,如乘法分配律(a+b)×c=a×c+b×c;又如在“有余数的除法”教学中,最后出现一道思考题:“六一”联欢会上,小明按照3个红气球、2个黄气球、1个蓝气球的顺序把气球串起来装饰教室.你能知道第24个气球是什么颜色的吗?解决这个问题可以用书写简便的字母a、b、c分别表示红、黄、蓝气球,则按照题意可以转化成如下符号形式:aaabbcaaabbcaaabbc……从而可以直观地找出气球的排列规律并推出第24个气球是蓝色的.这是符号思想的具体体现.

  化归思想

  化归思想是数学中最普遍使用的一种思想方法,其基本思想是:把甲问题的求解,化归为乙问题的求解,然后通过乙问题的解反向去获得甲问题的解.一般是指不可逆向的“变换”.它的基本形式有:化难为易,化生为熟,化繁为简,化整为零,化曲为直等.如求组合图形的面积时先把组合图形割补成学过的简单图形,然后计算出各部分面积的和或差,均能使学生体会化归法的本质.

  分解思想

  分解思想就是先把原问题分解为若干便于解决的子问题,分解出若干便于求解的范围,分解出若干便于层层推进的解题步骤,然后逐个加以解决并达到最后顺利解决原问题的目的的一种思想方法.如在五年级《解决问题的策略》教学中“倒退着想”的解题策略就体现了这种思想.

  转换思想

  转换思想是一种解决数学问题的重要策略,是由一种形式变换成另一种形式的思想方法,这里的变换是可逆的双向变换.在解决数学问题时,转换是一种非常有用的策略.对问题进行转换时,既可转换已知条件,也可转换问题的结论;转换可以是等价的,也可以是不等价的,用转换思想来解决数学问题,转换仅是第一步,第二步要对转换后的问题进行求解,第三步要将转换后问题的解答反演成问题的解答.如果采用等价关系作转换,可直接求出解而省略反演这一步.

  如计算:2.8÷113÷17÷0.7,直接计算比较麻烦,而分数的乘除运算比小数方便,故可将原问题转换为:28/10×3/4×7/1×10/7,这样,利用约分就能很快获得本题的解

  分类思想

  分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准.如自然数的分类,若按能否被2整除分奇数和偶数;按因数的个数分素数和合数.又如三角形可以按边分,也可以按角分.不同的分类标准就会有不同的分类结果,从而产生新的概念.对数学对象的正确、合理的分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构

  归纳思想

  数学归纳法是一种数学证明方法,典型地用于确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的.有一种用于数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式,这就是著名的结构归纳法

  类比思想

  数学上的类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想,它能够解决一些表面上看似复杂困难的问题.类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟得自然和简洁,从而可以激发起学生的创造力,正如数学家波利亚所说:“我们应该讨论一般化和特殊化和类比的这些过程本身,它们是获得发现的伟大源泉.”

  如由加法交换律a+b=b+a的学习迁移到乘法分配律a×b=b×a的学习

  又如长方形的面积公式为长×宽=a×b,通过类比,三角形的面积公式也可以理解为长(底)×宽(高)÷2=a×b(h)÷2.类似的,圆柱体体积公式为底面积×高,那么锥体的体积可以理解为底面积×高÷3

  假设思想

  假设思想是一种常用的推测性的数学思考方法.利用这种思想可以解一些填空题、判断题和应用题.有些题目数量关系比较隐蔽,难以建立数量之间的联系,或数量关系抽象,无从下手.可先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,最后找到正确答案的一种思想方法.假设思想是一种有意义的想象思维,掌握之后可以使得要解决的问题更形象、具体,从而丰富解题思路.

  比较思想

  人类对一切事物的认识,都是建筑在比较的基础上,或同中辨异,或异中求同.俄国教育家乌申斯基说过:“比较是一切理解和一切思维的基础.”小学生学习数学知识,也同样需要通过对数学材料的比较,理解新知的本质意义,掌握知识间的联系和区别.

  在教学分数应用题中,教师要善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题的途径.

  极限思想

  事物是从量变到质变,极限方法的实质正是通过量变的无限过程达到质变.

  教学“圆的面积和周长”中,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式,还能从曲与直的矛盾转化中萌发了无限逼近的极限思想.

  战国时代的《庄子·天下》篇中的“一尺之棰,日取其半,万世不竭.”充满了极限思想.古代杰出的数学家刘徽的“割圆术”就是利用极限思想来求得圆的周长的,他首先作圆内接正多边形,当多边形的边数越多时,多边形的周长就越接近于圆的周长.刘徽总结出:“割之弥细,所失弥少.割之又割以至于不可割,则与圆合体无所失矣.”正是用这种极限的思想,刘徽求出了π,即“徽率”.

  现行小学教材中有许多处注意了极限思想的渗透:在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想.在循环小数这一部分内容,在教学1÷3=0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的.在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的.

  演绎思想:

  演绎也是理智的活动,但是和直观不同,它们不是理智的单纯活动,必须先假定了某些真理(或定义)之后,然后再凭借这些定义推出一些结论.譬如:我们知道了三角形的定义和定理之后,可以推出一个三角形内角的总和等于两直角之和.所以直观的功用是在于提供科学和哲学的最新原则.而演绎则是应用这些原则来建立一些定理和命题.演绎并不要求像直观所拥有的那种

2019-11-22 13:07:40

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •