(1)你的题应是(2x-3)/(x^2-x)=A/(x-1)+B/x
如果是这样,可得,(2x-3)/(x^2-x)=(Ax+Bx-B)/(X^2-X)
这个方程相当于恒等式,也就是说各项系数分别相等.
所以,A+B=2
(2)题就是(3a^2-5ab-2b^2)/(2a^2+3ab-5b^2)
由(a-b)/b=1/2,得,2a=3b
(3a^2-5ab-2b^2)/(2a^2+3ab-5b^2)
=[(3a+b)(a-2b)]/[(2a+5b)(a-b)]
将2a=3b代入上式得:[(9b/2+b)(3b/2-2b)]/[(3b+5b)(3b/2-b)]=[(11b/2)*(-b/2)]/(8b*b/4)=-11/16.
(3)题应是x^2/(x-1)-(1+1/(x^2-x))=x^2/(x-1)-(x^2-x+1)/(x^2-x)=(x^3-x^2+x-1)/(x^2-x)=[(x^2+1)(x-1)]/[x*(x-1)]=(x^2+1)/x
由,x^2-4x+1=0,得,x^2+1=4x即(x^2+1)/x=4
所以x^2/(x-1)-(1+1/(x^2-x))=4
(4)题应是a/(a+1)+b/(b+1)+c/(c+1)=
[1-1/(a+1)]+[1-1/(b+1)]+[1-(c+1)]=3-[1/(a+1)+1/(b+1)+1/(c+1)]
又1/(a+1)=1/[x/(y+z)+1]=1/[(x+y+z)/(y+z)]=
(y+z)/(x+y+z)
1/(b+1)=(z+x)/(x+y+z)
1/(c+1)=(x+y)/(x+y+z)
所以
a/(a+1)+b/(b+1)+c/(c+1)=3-[1/(a+1)+1/(b+1)+1/(c+1)]=3-〔(y+z)/(x+y+z)+(z+x)/(x+y+z)+(x+y)/(x+y+z)〕=3-(y+z+z+x+x+y)/(x+y+z)=1