抛物线的平移对称旋转例如二次函数y=ax²+bx+-查字典问答网
分类选择

来自苏曙光的问题

  抛物线的平移对称旋转例如二次函数y=ax²+bx+c1.将这个函数向上或向下,向左或向右h个长度单位2.将这个函数绕某个点(m,n)旋转180°、顺时/逆时针旋转90°3.将这个函数以某个点(m1,n1)中

  抛物线的平移对称旋转

  例如二次函数y=ax²+bx+c

  1.将这个函数向上或向下,向左或向右h个长度单位

  2.将这个函数绕某个点(m,n)旋转180°、顺时/逆时针旋转90°

  3.将这个函数以某个点(m1,n1)中心对称

  这种形式能不能用一般的形式表达,希望能用含abcmnxy的式子表达出来

  或者希望能给出具体的做法

  达成之后必有高分!

3回答
2020-01-23 19:41
我要回答
请先登录
卞致瑞

  抛物线(其实不仅适用于抛物线)的变换方法:设点M(x0,y0)在抛物线y=ax²+bx+c上

  1.平移:若向右平移m个单位(向左则为负),那么平移后的图像上一定有一点M'(x1,y1)它与点M的关系是x0+m=x1,y0=y1;那么x0=x1-m,y0=y1,代入抛物线方程得到等式y=a(x1-m)²+b(x1-m)+c,

  求得新曲线的方程为y=a(x-m)²+b(x-m)+c,其他方向的平移求法类似

  2.旋转:抛物线y=ax²+bx+c绕原点旋转θ度(取逆时针为正方向),那么点M(x0,y0)经过变换后会到达新的点M''(x2,y2),M与M''间满足一下关系AM=M'',A为旋转矩阵

  A=[cosθsinθ],具体说来就是x2=x0*cosθ-y0*sinθ

  [-sinθcosθ]y2=x0*sinθ+y0*cosθ

  反解出来y0=y2cosθ-x2sinθ,x0=x2cosθ+y2sinθ

  代入原方程y2cosθ-x2sinθ=a(x2cosθ+y2sinθ)²+b(x2cosθ+y2sinθ)+c

  得到抛物线绕原点旋转θ度的新曲线方程:ycosθ-xsinθ=a(xcosθ+ysinθ)²+b(xcosθ+ysinθ)+c

  注意这里是绕原点进行旋转,若要绕某个点(m,n)旋转,那么先进行平移变换将(m,n)平移到原点位置,再绕原点旋转,之后再做平移变换将原点平移到当前坐标系的(-m,-n)位置,便得到了所求的结果.

  3.对称:M(x0,y0)在抛物线y=ax²+bx+c上,作对称变换后的曲线上必有一点M'''(x3,y3),满足M与M'''关于点(m1,n1)对称,那么他们间的关系是(x0+x3)/2=m1,(y0+y3)/2=n1,

  得到关系式x0=2m1-x3,y0=2n1-y3,代入y=ax²+bx+c得,(2n1-y3)=a(2m1-x3)^2+b(2m1-x3)+c

  得到最后要求的结果:(2n1-y)=a(2m1-x)^2+b(2m1-x)+c

2020-01-23 19:46:07
苏曙光

  那么请问关于2和3,是否能用y=的方法来概括呢?(其实我只是一个单纯的初中生,这些看起来不太好理解哈~)

2020-01-23 19:47:37
卞致瑞

  没有简单可用的公式,如果你想要公式的话,那你把最后得出来的结论化一下,2.抛物线绕原点旋转θ度:ycosθ-xsinθ=a(xcosθ+ysinθ)²+b(xcosθ+ysinθ)+c3.抛物线以点(m1,n1)中心对称:(2n1-y)=a(2m1-x)^2+b(2m1-x)+c把这2个结果整理一下应该可以得到y=的形式,不过结果不会简单,还有一点要提醒你一下,抛物线的旋转很可能不能得到抛物线的一般形式y=ax²+bx+c,你得到的是ay²+bx²+cx+dy+e=0的形式,这是二次圆锥曲线的基本形式,,实际上就是把y=x²顺时针旋转90度,你也得不到y=ax²+bx+c的形式,你得到的是y²=x,其实结果并不重要,关键的是方法,如果想深入了解,建议去看看二次圆锥曲线相关的知识。

2020-01-23 19:49:12

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •