1.A^(-1)=A*/┃A┃,┃A*┃=┃A┃^(n-1)=(1/2)^2=1/4
于是:┃(2A)-1-5A*┃=┃1/2×A-1-5A*┃=┃-4A*┃=-1.
┃A*┃=┃A┃^(n-1)应该证明过,没证明也很简单:
┃A*┃=┃┃A┃A^(-1)┃=┃A┃^n┃A^(-1)┃=┃A┃^(n-1).
2.11-3-11
3-1-3442行-1行×3,3行-1行
15-9-80------------------------→
11-3-11
0-46713行+2行
04-6-7-1-----------→
11-3-11
0-4671
00000
系数行列式的秩为2,未知数有4个,于是自由变量有2个(4-2)不妨设为x3、x4
令(x3,x4)=(1,0)和(0,1)代入最后一个矩阵(所代表的齐次方程组x1+x2-3x3-x4=0和-4x2+6x3+7x4=0)求得基础解系:(3/2,3/2,1,0)T和(-3/4,7/4,0,1)T
求出最后一个矩阵(所代表的方程组x1+x2-3x3-x4=1和-4x2+6x3+7x4=1)的一个特令x3=x4=0,于是(5/4,-1/4,0,0)T
于是方程组的解是:k1(3/2,3/2,1,0)T+k2(-3/4,7/4,0,1)T+(5/4,-1/4,0,0)T
解线性方程组,先求出系数矩阵的秩,然后确定自由变量的个数,在由给定自由变量的值确定基础解系,然后求出方程组的一组特解,基本上步骤就这样.
3.求矩阵列向量组一个极大无关组,只能对矩阵做列变换
2-1-112
11-214以第一列为准使第二列起第一行的数为0
4-62-24----------------------------------→
36-979
20000
13/2-3/21/23以第二列为准使第三列起第二行的数为0
4-44-40----------------------------------→
315/2-15/211/26
20000
13/2000以第四列为准使第五列起第三行的数为0
4-40-8/38----------------------------------→
315/203-9
20000
13/2000
4-40-8/30
315/2030
于是矩阵秩为3,考察最后一个矩阵,第1、2、4列不为0,于是原矩阵的1、2、4列构成一个最大无关向量组(不妨列向量设为α1、α2、α3、α4、α5)
考察第3列怎么变为0的:第一次变换中,第二列变换为了α2+α1/2第三列变换为了α3+α1/2,第二次变换中,第三列变换为了α2+α1/2+α3+α1/2
于是:α2+α1/2+α3+α1/2=0,α1+α2+α3=0,于是:α3=-α1-α1
同理:α2→α2+α1/2,α4→α4-α1/2→(α4-α1/2)-(α2+α1/2)/3
α5→α5-α1→(α5-α1)-2(α2+α1/2)→
(α5-α1)-2(α2+α1/2)+3[(α4-α1/2)-(α2+α1/2)/3]=0
于是:α5=4α1+3α2-3α4.