【抛物线的性质】-查字典问答网
分类选择

来自黄景春的问题

  【抛物线的性质】

  抛物线的性质

1回答
2020-01-23 14:42
我要回答
请先登录
戴恩光

  1.抛物线是轴对称图形.对称轴为直线x=-b/2a.

  对称轴与抛物线唯一的交点为抛物线的顶点P.

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)

  当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上.

  3.二次项系数a决定抛物线的开口方向和大小.

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口.

  |a|越大,则抛物线的开口越小.

  4.一次项系数b和二次项系数a共同决定对称轴的位置.

  当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a0,所以b/2a要小于0,所以a、b要异号

  可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.

  事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到

  .

  5.常数项c决定抛物线与y轴交点.

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ=b^2;-4ac>0时,抛物线与x轴有2个交点.

  Δ=b^2;-4ac=0时,抛物线与x轴有1个交点.

  _______

  Δ=b^2-4ac<0时,抛物线与x轴没有交点.X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  当a>0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变

  当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)

  7.特殊值的形式

  ①当x=1时y=a+b+c

  ②当x=-1时y=a-b+c

  ③当x=2时y=4a+2b+c

  ④当x=-2时y=4a-2b+c

  8.定义域:R

  值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)

  奇偶性:偶函数

  周期性:无

  解析式:

  ①y=ax^2+bx+c[一般式]

  ⑴a≠0

  ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

  ⑶极值点:(-b/2a,(4ac-b^2)/4a);

  ⑷Δ=b^2-4ac,

  Δ>0,图象与x轴交于两点:

  ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);

  Δ=0,图象与x轴交于一点:

  (-b/2a,0);

  Δ<0,图象与x轴无交点;

  ②y=a(x-h)^2+k[顶点式]

  此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

  ③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)

  对称轴X=(X1-X2)/2当a>0且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X的增大而减小

  此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连用).

2020-01-23 14:47:06

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •