【求解一道数学题(圆锥曲线)椭圆的方程为(x^2/5)+y^-查字典问答网
分类选择

来自刘荣辉的问题

  【求解一道数学题(圆锥曲线)椭圆的方程为(x^2/5)+y^2=1,过椭圆的右焦点F作直线L交椭圆于A、B两点,交y轴于M点,若向量MA=λ1向量AF,向量MB=λ2向量BF,求证:λ1+λ2为定值.】

  求解一道数学题(圆锥曲线)

  椭圆的方程为(x^2/5)+y^2=1,过椭圆的右焦点F作直线L交椭圆于A、B两点,交y轴于M点,若向量MA=λ1向量AF,向量MB=λ2向量BF,求证:λ1+λ2为定值.

1回答
2020-01-26 19:09
我要回答
请先登录
田建军

  答案为-10证明先由椭圆的方程为(x^2/5)+y^2=1,求出右焦点F(2,0)再由过椭圆的右焦点F的直线L交y轴于M点即其存在斜率k由点斜式方程设l:y=k*(x-2)此时再与(x^2/5)+y^2=1联立的方程(5k^2+1)x^2-20k^2*x+5(4k^2-1)=0...

2020-01-26 19:11:26

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •