据任意角的三角函数的定义证明(sinα+tanα)(cosα+1/tanα)=(1+sinα)(1+cosα)证明:左边=(y/r+y/x)•(x/r+x/y)=y(1/r+1/x)•x(1/r+1/y)=[y(1/y+1+r)]•[x(1/x+1/r)]=(1+y/r)(1+x/r)=右边
据任意角的三角函数的定义证明(sinα+tanα)(cosα+1/tanα)=(1+sinα)(1+cosα)
证明:左边=(y/r+y/x)•(x/r+x/y)
=y(1/r+1/x)•x(1/r+1/y)
=[y(1/y+1+r)]•[x(1/x+1/r)]
=(1+y/r)(1+x/r)=右边