来自龚金宝的问题
SnTnnSn/Tn=2n-3/4-3a3/b5+b7+a3/b4+b8
SnTnnSn/Tn=2n-3/4-3a3/b5+b7+a3/b4+b8
2回答
2020-01-29 14:08
SnTnnSn/Tn=2n-3/4-3a3/b5+b7+a3/b4+b8
SnTnnSn/Tn=2n-3/4-3a3/b5+b7+a3/b4+b8
前n项和公式为:Sn=na1+n(n-1)d/2(即二次函数形式)
故设:Sn=(2n--3)xkn;Tn=(4n--3)xkn(k≠0);
所以Sn=2kn^2--3kn;Tn=4kn^2--3kn
所以:S6=72k--18k=64k,S5=50k--15k=45k;则a6=1/2(a3+a9)=S6--S5=19k即:a3+a9=38k
T6=144k--18k=126k,T5=100k--15k=85k;则b6=1/2(b5+b7)=1/2(b4+b8)=T6--T5=41k
即:(b5+b7)=(b4+b8)=82k
所以:a9/(b5+b7)+a3/(b4+b8)=(a3+a9)/(b5+b7)=38k/82k=19/41
==谢谢