数学三角函数常用的二倍角公式-查字典问答网
分类选择

来自石晓红的问题

  数学三角函数常用的二倍角公式

  数学三角函数常用的二倍角公式

2回答
2020-01-30 00:31
我要回答
请先登录
蒲采松

  两角和公式

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB-1)/(cotB+cotA)

  cot(A-B)=(cotAcotB+1)/(cotB-cotA)

  倍角公式

  tan2A=2tanA/[1-(tanA)^2]

  cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2

  sin2A=2sinA*cosA

  三倍角公式

  sin3a=3sina-4(sina)^3

  cos3a=4(cosa)^3-3cosa

  tan3a=tana*tan(π/3+a)*tan(π/3-a)

  半角公式

  sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

  cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)

  和差化积

  sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)

  sin(a)?sin(b)=2cos((a+b)/2)sin((a-b)/2)

  cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)

  cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)

  tanA+tanB=sin(A+B)/cosAcosB

  积化和差公式

  sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

  cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

  sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

  诱导公式

  sin(-a)=-sin(a)

  cos(-a)=cos(a)

  sin(pi/2-a)=cos(a)

  cos(pi/2-a)=sin(a)

  sin(pi/2+a)=cos(a)

  cos(pi/2+a)=-sin(a)

  sin(pi-a)=sin(a)

  cos(pi-a)=-cos(a)

  sin(pi+a)=-sin(a)

  cos(pi+a)=-cos(a)

  tgA=tanA=sinA/cosA

  万能公式

  sin(a)=(2tan(a/2))/(1+tan^2(a/2))

  cos(a)=(1-tan^2(a/2))/(1+tan^2(a/2))

  tan(a)=(2tan(a/2))/(1-tan^2(a/2))

  其它公式

  a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c)[其中,tan(c)=b/a]

  a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c)[其中,tan(c)=a/b]

  1+sin(a)=(sin(a/2)+cos(a/2))^2

  1-sin(a)=(sin(a/2)-cos(a/2))^2

  其他非重点三角函数

  csc(a)=1/sin(a)

  sec(a)=1/cos(a)

  双曲函数

  sinh(a)=(e^a-e^(-a))/2

  cosh(a)=(e^a+e^(-a))/2

  tgh(a)=sinh(a)/cosh(a)

  公式一:

  设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)=sinα

  cos(2kπ+α)=cosα

  tan(2kπ+α)=tanα

  cot(2kπ+α)=cotα

  公式二:

  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α与-α的三角函数值之间的关系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan

2020-01-30 00:32:38
刘锁兰

  sin2x=2sinx*cosxcos2x=2(cosx^2)-1=1-2(sinx)^2=(cosx)^2-(sinx)^2tan2x=2tanx/[1-(tanx)^2]

2020-01-30 00:33:48

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •