非常基本的线性代数证明题1.设a1,a2,...,an是一组-查字典问答网
分类选择

来自冯全源的问题

  非常基本的线性代数证明题1.设a1,a2,...,an是一组n维向量,已知n维单位坐标向量e1,e2,...,en能由它们线性表示,证明a1,a2,...,an线性无关.2.设a1,a2,...an是一组n维向量,证明它们线性无关的充要条件是任

  非常基本的线性代数证明题

  1.设a1,a2,...,an是一组n维向量,已知n维单位坐标向量e1,e2,...,en能由它们线性表示,证明a1,a2,...,an线性无关.

  2.设a1,a2,...an是一组n维向量,证明它们线性无关的充要条件是任一n维向量都可由他们线性表示.

  3.设向量组B:b1,b2,...,br能由向量组A:a1,a2,...,as线性表示为:B=AK,其中K为sxr矩阵,且A组线性无关.证明B组线性无关的充要条件是R(K)=r.

  书上基本没有证明题..所以我看起来不知怎么下手,给下清晰思路就可以了喔...

1回答
2020-02-05 00:41
我要回答
请先登录
路世瑞

  1.考虑向量组A={a1,a2,...,an}的秩:它由n个向量组成,所以R(A)

2020-02-05 00:42:26

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •