来自孙志卓的问题
证明方程式x^2cosx-sinx=0在区间(π,3/2π)内至少有一个实根
证明方程式x^2cosx-sinx=0在区间(π,3/2π)内至少有一个实根
1回答
2020-02-04 22:55
证明方程式x^2cosx-sinx=0在区间(π,3/2π)内至少有一个实根
证明方程式x^2cosx-sinx=0在区间(π,3/2π)内至少有一个实根
设f(x)=x^2cosx-sinx,可以看出函数是连续的,求出其在区间两个端点处的值,f(π)=-π^20,可以看出,函数在区间端点处取值为异号的,即在已知区间里至少有一个使得函数值为零的点,又由函数的连续性可知f(x)在(π,3/2)...