关于等比数列求和已知A+A^2+A^3+A^4+A^5=10-查字典问答网
分类选择

来自李暾的问题

  关于等比数列求和已知A+A^2+A^3+A^4+A^5=1000求A的值.

  关于等比数列求和

  已知A+A^2+A^3+A^4+A^5=1000

  求A的值.

1回答
2020-02-06 15:41
我要回答
请先登录
李连山

  在等式左边和右边同时加1,变成1+A+A^2+A^3+A^4+A^5=1001

  然后我们可以提取因式(1+A),变成(1+A)*(1+A^2+A^4)=1001

  然后再把1001分解质因数,1001=7*11*13,然后选择其中一个数为1+A那项,则A可能为6,10,12,然后再逐个试一下.

  这道题虽然是等比数列的求和问题,但是可以不用等比数列求和公式,不过,我可以告诉你等比数列的求和公式:

  Sn=a1(1-q^n)/1-q

  其中,n为项数,q为公差,a1为首项.

2020-02-06 15:43:30

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •