求所有的三角函数各种关系的公式,越多越好
求所有的三角函数各种关系的公式,越多越好
求所有的三角函数各种关系的公式,越多越好
求所有的三角函数各种关系的公式,越多越好
三角函数公式
1.同角三角函数的基本关系:
倒数关系:tanα•cotα=1sinα•cscα=1cosα•secα=1
商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα
平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式:sin²α+cos²α=1tanα*cotα=1
2.一个特殊公式:(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ)
证明:(sina+sinθ)*(sina+sinθ)=2sin[(θ+a)/2]cos[(a-θ)/2]*2cos[(θ+a)/2]sin[(a-θ)/2]=sin(a+θ)*sin(a-θ)
3.锐角三角函数公式
正弦:sinα=∠α的对边/∠α的斜边
余弦:cosα=∠α的邻边/∠α的斜边
正切:tanα=∠α的对边/∠α的邻边
余切:cotα=∠α的邻边/∠α的对边
4.二倍角公式
正弦sin2A=2sinA•cosA
余弦1.Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)
2.Cos2a=1-2Sin^2(a)
3.Cos2a=2Cos^2(a)-1
正切tan2A=(2tanA)/(1-tan^2(A))
5.三倍角公式
sin3α=4sinα•sin(π/3+α)sin(π/3-α)
cos3α=4cosα•cos(π/3+α)cos(π/3-α)
tan3a=tana•tan(π/3+a)•tan(π/3-a)
6.n倍角公式
sin(na)=Rsinasin(a+π/n)……sin(a+(n-1)π/n).其中R=2^(n-1)
7.半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2;cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
8.和差化积
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
9.两角和公式
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
10.积化和差
sinαsinβ=[cos(α-β)-cos(α+β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
11.双曲函数
sinh(a)=[e^a-e^(-a)]/2
cosh(a)=[e^a+e^(-a)]/2
tanh(a)=sinh(a)/cosh(a)
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα
公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα
公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα
公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)A•sin(ωt+θ)+B•sin(ωt+φ)=√{(A²+B²+2ABcos(θ-φ)}•sin{ωt+arcsin[(A•sinθ+B•sinφ)/√{A^2+B^2;+2ABcos(θ-φ)}}√表示根号,包括{……}中的内容
12.诱导公式
sin(-α)=-si