【怎样解一元二次方程,详细点阿!多举几个例子,谢谢!】
怎样解一元二次方程,详细点阿!多举几个例子,谢谢!
【怎样解一元二次方程,详细点阿!多举几个例子,谢谢!】
怎样解一元二次方程,详细点阿!多举几个例子,谢谢!
1在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程.
2一元二次方程有四个特点:(1)只含有一个未知数;(2)次数最高项的次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.(4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)
3直接开平方(1)直接开平方法就是用直接开平方求解一元二次方程的方法.
(3x+1)^2=7∴(3x+1)^2=7∴3x+1=±√7(注意不要丢解)∴x=...∴原方程的解为x1=...,x2=...
(2)用配方法解方程3x^2-4x-2=0将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x^2-x=方程两边都加上一次项系数一半的平方:x^2-x+()^2=+()^2配方:(x-)^2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2=.
(3)公式法:把一元二次方程化成ax^2+bx+c的一般形式,然后把各项系数a,b,c的值代入求根公式就可得到方程的根.
当b^2-4ac>0时,求根公式为x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a(两个不相等的实数根)
当b^2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)
当b^2-4ac0∴x===∴原方程的解为x1=,x2=.
(5)因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得的根,就是原方程的两个根.这种解一元二次方程的方法叫做因式分解法.用因式分解法解下列方程:(1)(x+3)(x-6)=-8(2)2x^2+3x=0(3)6x^2+5x-50=0(选学)(4)x^2-4x+4=0(选学)(x+3)(x-6)=-8化简整理得x^2-3x-10=0(方程左边为二次三项式,右边为零)(x-5)(x+2)=0(方程左边分解因式)∴x-5=0或x+2=0(转化成两个一元一次方程)∴x1=5,x2=-2是原方程的解.2x^2+3x=0x(2x+3)=0(用提公因式法将方程左边分解因式)∴x=0或2x+3=0(转化成两个一元一次方程)∴x1=0,x2=-3/2是原方程的解.注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解.6x2+5x-50=0(2x-5)(3x+10)=0(十字相乘分解因式时要特别注意符号不要出错)∴2x-5=0或3x+10=0∴x1=5/2,x2=-10/3是原方程的解.x^2-4x+4=0(∵4可分解为2·2,∴此题可用因式分解法)(x-2)(x-2)=0∴x1=2,x2=2是原方程的解.
小结: