来自郭永鑫的问题
为什么三个非零向量共面的充要条件是由这三个向量组成的行列式等于0
为什么三个非零向量共面的充要条件是由这三个向量组成的行列式等于0
1回答
2020-02-06 11:21
为什么三个非零向量共面的充要条件是由这三个向量组成的行列式等于0
为什么三个非零向量共面的充要条件是由这三个向量组成的行列式等于0
有向量a,b,c,根据混合积的几何意义可知|(a×b)·c|是以|a|,|b|,|c|为棱的平行六面体体积.
既然行列式为0,说明体积为0.体积为0可以理解成是高为0,高为0那麼就说明是平面图形,abc共面.
当共面的时候a×b是与abc所在平面垂直的,那麼a×b与c垂直,所以点乘为0