设Φ(u,v)具有连续偏导数,证明由方程Φ(cx-az,cy-查字典问答网
分类选择

来自何军辉的问题

  设Φ(u,v)具有连续偏导数,证明由方程Φ(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a(эz/эx)+b(эz/эy)=c你说的方法好象行不通啊,到最后那эz/эx到底=什么呢,能帮我写下过程吗.我只知道另外一种方法,那

  设Φ(u,v)具有连续偏导数,证明由方程Φ(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a(эz/эx)+b(эz/эy)=c

  你说的方法好象行不通啊,到最后那эz/эx到底=什么呢,能帮我写下过程吗.我只知道另外一种方法,那就是两边微分,但最后算的很麻烦.可你的方法好象比我的要简单些,能帮我写下过程吗.下面是我的做法

  先两边微分,的0=Φ`d(cx-az)+Φ`d(cy-bz)=cΦ`dx+cΦ`dy-(aΦ`+bΦ`)dz得:dz=cΦ`dx+cΦ`dy/aΦ`+bΦ`3z/3x=cΦ`/aΦ`+bΦ`3z/3y=cΦ`/aΦ`+bΦ`

1回答
2020-02-08 21:42
我要回答
请先登录
沙芦华

  cx-az看成u,cy-bz看成v,对Φ(u,v)=0分别对x,y求偏导,自然得到结果,你要是不会对隐函数求导或者不会对函数求偏导,就要去看书补充基础知识,只满足于得到具体某一题的答案对你没有好处抽象函数你怕什么,该怎么导还是怎...

2020-02-08 21:43:50

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •