熵在生活各方面的应用?
熵在生活各方面的应用?
熵在生活各方面的应用?
熵在生活各方面的应用?
科技名词定义
中文名称:熵
英文名称:entropy
定义1:
表示物质系统状态的一个物理量(记为S),它表示该状态可能出现的程度.在热力学中,是用以说明热学过程不可逆性的一个比较抽象的物理量.孤立体系中实际发生的过程必然要使它的熵增加.
所属学科:
大气科学(一级学科);动力气象学(二级学科)
定义2:
热力系中工质的热力状态参数之一.在可逆微变化过程中,熵的变化等于系统从热源吸收的热量与热源的热力学温度之比,可用于度量热量转变为功的程度.
所属学科:
电力(一级学科);通论(二级学科)
定义3:
系统中无序或无效能状态的度量.熵在信息系统中作为事物不确定性的表征.
所属学科:
生态学(一级学科);数学生态学(二级学科)
熵(entropy)指的是体系的混乱的程度,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量.熵由鲁道夫•克劳修斯(RudolfClausius)提出,并应用在热力学中.后来在,克劳德•艾尔伍德•香农(ClaudeElwoodShannon)第一次将熵的概念引入到信息论中来.
基本释义
熵shang【拼音】:[shāng]
详细释义
1:物理学上指热能除以温度所得的商,标志热量转化为功的程度.
2:科学技术上用来描述、表征体系混乱度的函数.亦被社会科学用以借喻人类社会某些状态的程度.
3:熵是生物亲序,是行为携灵现象.科学家已经发明了测量无序的量,它称作熵,熵也是混沌度,是内部无序结构的总量.
历史
概念提出
1850年,德国物理学家鲁道夫•克劳修斯首次提出熵的概念,用来表示任何一种能量在空间中分布的
熵
均匀程度,能量分布得越均匀,熵就越大.一个体系的能量完全均匀分布时,这个系统的熵就达到最大值.在克劳修斯看来,在一个系统中,如果听任它自然发展,那么,能量差总是倾向于消除的.让一个热物体同一个冷物体相接触,热就会以下面所说的方式流动:热物体将冷却,冷物体将变热,直到两个物体达到相同的温度为止.克劳修斯在研究卡诺热机时,根据卡诺定理得出了对任意可逆循环过程都都适用的一个公式:dS=(dQ/T).
证明
对于绝热过程Q=0,故S≥0,即系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大.这就是熵增加原理.由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少.它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值.熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律.
1948年,香农在BellSystemTechnicalJournal上发表了《通信的数学原理》(AMathematicalTheoryofCommunication)一文,将熵的概念引入信息论中.
熵函数的来历
热力学第一定律就是能量守恒与转换定律,但是它并未涉及能量转换的过程能否自发地进行以及可进行到何种程度.热力学第二定律就是判断自发过程进行的方向和限度的定律,它有不同的表述方法:
克劳修斯的描述①热量不可能自发地从低温物体传到高温物体,即热量不可能从低温物体传到高温物体而不引起其他变化;
开尔文的描述②不可能从单一热源取出热量使之全部转化为功而不发生其他影响;
因此第二类永动机是不可能造成的.热力学第二定律是人类经验的总结,它不能从其他更普遍的定律推导出来,但是迄今为止没有一个实验事实与之相违背,它是基本的自然法则之一.
由于一切热力学变化(包括相变化和化学变化)的方向和限度都可归结为热和功之间的相互转化及其转化限度的问题,那么就一定能找到一个普遍的热力学函数来判别自发过程的方向和限度.可以设想,这种函数是一种状态函数,又是一个判别性函数(有符号差异),它能定量说明自发过程的趋势大小,这种状态函数就是熵函数.
如果把任意的可逆循环分割成许多小的卡诺循环,可得出
∑(δQi/Ti)r=0(1)
即任意的可逆循环过程的热温商之和为零.其中,δQi为任意无限小可逆循环中系统与环境的热交换量;Ti为任意无限小可逆循环中系统的温度.上式也可写成
∮(δQr/T)=0(2)
克劳修斯总结了这一规律,称这个状态函数为“熵”,用S来表示,即
dS=δQr/T(3)
对于不可逆过程,则可得
dS>δQr/T(4)
或dS-δQr/T>0(5)
这就是克劳修斯不等式,表明了一个隔离系统在经历了一个微小不可逆变化后,系统的熵变大于过程中的热温商.对于任一过程(包括可逆与不可逆过程),则有
dS-δQ/T≥0(6)
式中:不等号适用于不可逆过程,等号适用于可逆过程.由于不可逆过程是所有自发过程之共同特征,而可逆过程的每一步微小变化,都无限接近于平衡状态,因此这一平衡状态正是不可逆过程所能达到的限度.因此,上式也可作为判断这一过程自发与否的判据,称为“熵判据”.
对于绝热过程,δQ=0,代入上式,则?
dSj≥0(7)
由此可见,在绝热过程中,系统的熵值永不减少.其中,对于可逆的绝热过程,dSj=0,即系统的熵值不变;对于不可逆的绝热过程,dSj>0,即系统的熵值增加.这就是“熵增原理”,是热力学第二定律的数学表述,即在隔离或绝热条件下,系统进行自发过程的方向总是熵值增大的方向,直到熵值达到最大值,此时系统达到平衡状态.
熵函数的统计学意义
玻尔兹曼在研究分子运动统计现象的基础上提出来了公式:
S=k×LnΩ(8)
其中,Ω为系统分子的状态数,k为玻尔兹曼常数.
这个公式反映了熵函数的统计学意义,它将系统的宏观物理量S与微观物理量Ω联系起来,成为联系宏观与微观的重要桥梁之一.基于上述熵与热力学几率之间的关系,可以得出结论:系统的熵值直接反映了它所处状态的均匀程度,系统的熵值越小,它所处的状态越是有序,越不均匀;系统的熵值越大,它所处的状态越是无序,越均匀.系统总是力图自发地从熵值较小的状态向熵值较大(