流数、留数、导数是一回事吗流数、留数是一回事吗他们和导数有什么区别与联系
流数、留数、导数是一回事吗
流数、留数是一回事吗
他们和导数有什么区别与联系
流数、留数、导数是一回事吗流数、留数是一回事吗他们和导数有什么区别与联系
流数、留数、导数是一回事吗
流数、留数是一回事吗
他们和导数有什么区别与联系
流数(fluxion)
1665年5月20日,英国杰出物理学家牛顿第一次提出“流数术”(即微积分),后来世人就以这天作为“微积分诞生日”.牛顿将古希腊以来求解无穷小问题的种种特殊方法统一为两类算法:正流数术(微分)和反流数术(积分),反映在1669年的《运用无限多项方程》、1671年的《流数术与无穷级数》、1676年的《曲线求积术》三篇论文和《原理》一书中,以及被保存下来的1666年10月他写的在朋友们中间传阅的一篇手稿《论流数》中.所谓“流量”就是随时间而变化的自变量如x、y、s、u等,“流数”就是流量的改变速度即变化率,写作等.他说的“差率”“变率”就是微分.与此同时,他还在1676年首次公布了他发明的二项式展开定理.牛顿利用它还发现了其他无穷级数,并用来计算面积、积分、解方程等等.牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合.他把连续变量叫做流动量,把这些流动量的导数叫做流数.牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)微积分是研究函数的微分、积分以及有关概念和应用的数学分支.微积分是建立在实数、函数和极限的基础上的.
流数的出现,成了数学发展中除几何与代数以外的另一重要分支——数学分析(牛顿称之为“借助于无限多项方程的分析”),并进一步进进发展为微分几何、微分方程、变分法等等,这些又反过来促进了理论物理学的发展.例如瑞士J.伯努利曾征求最速降落曲线的解答,这是变分法的最初始问题,半年内全欧数学家无人能解答.1697年,一天牛顿偶然听说此事,当天晚上一举解出,并匿名刊登在《哲学学报》上.伯努利惊异地说:“从这锋利的爪中我认出了雄狮”.
解析函数f(z)沿一条正向简单闭曲线的积分值.严格定义是:f(z)在0<|z-a|≤R上解析,即a是f(z)的孤立奇点,则称积分值(1/2πi)∫|z-a|=Rf(z)dz为f(z)关于a点的留数,记作Res[f(z),a].如果f(z)是平面流速场的复速度,而a是它的旋源点(即旋涡中心或源汇中心),则积分∫|z-a|=Rf(z)dz表示旋源的强度——环流量,所以留数是环流量除以2πi的值.由于解析函数在孤立奇点附近可以展成罗朗级数:f(z)=∑ak(z-a)k,将它沿|z-a|=R逐项积分,立即可见Res[f(z),a]=a-1,这表明留数是解析函数在孤立奇点的罗朗展式中负一次幂项的系数.
关于在扩充复平面上仅有有限多个孤立奇点的解析函数有两条与留数有关的重要性质:①该解析函数沿某一条不过孤立奇点的简单闭曲线积分等于其在曲线内部全部孤立奇点的留数之总和.②该解析函数关于全部孤立奇点的留数之总和为零.这两条性质正好与环流量的可叠加性及质量守恒定律相一致.
利用留数的性质以及它与积分的关系,我们可以通过将积分运算转化为留数的计算.
导数(derivative)亦名微商,由速度问题和切线问题抽象出来的数学概念.又称变化率.如一辆汽车在10小时内走了600千米,它的平均速度是60千米/小时,但在实际行驶过程中,是有快慢变化的,不都是60千米/小时.为了较好地反映汽车在行驶过程中的快慢变化情况,可以缩短时间间隔,设汽车所在位置x与时间t的关系为x=f(t),那么汽车在由时刻t0变到t1这段时间内的平均速度是[f(t1)-f(t0)/t1-t0],当t1与t0很接近时,汽车行驶的快慢变化就不会很大,平均速度就能较好地反映汽车在t0到t1这段时间内的运动变化情况,自然就把极限[f(t1)-f(t0)/t1-t0]作为汽车在时刻t0的瞬时速度,这就是通常所说的速度.一般地,假设一元函数y=f(x)在x0点的附近(x0-a,x0+a)内有定义,当自变量的增量Δx=x-x0→0时函数增量Δy=f(x)-f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率).若函数f在区间I的每一点都可导,便得到一个以I为定义域的新函数,记作f′,称之为f的导函数,简称为导数.函数y=f(x)在x0点的导数f′(x0)的几何意义:表示曲线l在P0〔x0,f(x0)〕点的切线斜率.
导数是微积分中的重要概念.导数定义为,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限.在一个函数存在导数时,称这个函数可导或者可微分.可导的函数一定连续.不连续的函数一定不可导.
物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示.如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性.