来自蔡玉华的问题
求一道几何证明题的证法在三角形ABC中,角B=2角C,AD垂直BC,M为BC中点,求证DM=1/2AB.
求一道几何证明题的证法
在三角形ABC中,角B=2角C,AD垂直BC,M为BC中点,求证DM=1/2AB.
1回答
2020-02-08 19:56
求一道几何证明题的证法在三角形ABC中,角B=2角C,AD垂直BC,M为BC中点,求证DM=1/2AB.
求一道几何证明题的证法
在三角形ABC中,角B=2角C,AD垂直BC,M为BC中点,求证DM=1/2AB.
过M做ME//AB,切交AC于E
显然ME=1/2AB(三角形中位线定理)
且E为AC中点
角EMC=角B.
又AD垂直于BC
故在直角三角形ADC中,连接DE,显然DE为其斜边AC的中线
所以DE=1/2AC=CE=AE
故:三角形CDE为等腰三角形
角CDE=角C
又角EMC为三角形EDM的一个外角
所以角EMC=角EDM+角DEM
又:角B=2角C
角B=角EMC
角EDM=角C
所以角DEM=角EDM=角C
故:三角形DEM为等腰三角形,
DM=EM
又EM=1/2AB
所以DM=1/2AB