简述牛顿和莱布尼兹发明微积分的历史背景、发明方法、应用价值的-查字典问答网
分类选择

来自孙希延的问题

  简述牛顿和莱布尼兹发明微积分的历史背景、发明方法、应用价值的异同

  简述牛顿和莱布尼兹发明微积分的历史背景、发明方法、应用价值的异同

1回答
2020-02-08 13:45
我要回答
请先登录
程韧

  牛顿与莱布尼兹创立微积分之解析点击数:63次录入时间:2013/4/159:51:00编辑:liuxinyuan2012[宣传赚点]下一页12今天,微积分已成为基本的数学工具而被广泛地应用于自然科学的各个领域.恩格斯说过:“在一切理论成就中,未有象十七世纪下半叶微积分的发明那样被看作人类精神的最高胜利了,如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正是在这里.”[1](p.244)本文试从牛顿、莱布尼兹创立“被看作人类精神的最高胜利”的微积分的时代背景及哲学思想对其展开剖析.

  一、牛顿所处的时代背景及其哲学思想

  “牛顿(IsaacNewton,1642-1727)1642年生于英格兰.⋯⋯,1661年,入英国剑桥大学,1665年,伦敦流行鼠疫,牛顿回到乡间,终日思考各种问题,运用他的智慧和数年来获得的知识,发明了流数术(微积分)、万有引力和光的分析.”[2](p.155)

  1665年5月20日,牛顿的手稿中开始有“流数术”的记载.《流数的介绍》和《用运动解决问题》等论文中介绍了流数(微分)和积分,以及解流数方程的方法与积分表.1669年,牛顿在他的朋友中散发了题为《运用无穷多项方程的分析学》的小册子,在这里,牛顿不仅给出了求一个变量对于另一个变量的瞬时变化率的普遍方法,而且证明了面积可以由求变化率的逆过程得到.因为面积也是用无穷小面积的和来表示从而获得的.所以牛顿证明了这样的和能由求变化率的逆过程得到(更精确地说,和的极限能够由反微分得到),这个事实就是我们现在所讲的微积分基本定理.这里“,牛顿使用的是无穷小方法,把变量的无限小增量叫做“瞬”,瞬是无穷小量,是不可分量,或是微元,牛顿通过舍弃“瞬”求得变化率.”[3](p.199)1671年牛顿将他关于微积分研究的成果整理成《流数法和无穷级数》(1736),在这里,他认为变量是连续运动产生的,他把变量叫做流,变量的变化率叫做流数.牛顿更清楚地陈述了微积分的基本问题:已知两个流之间的关系,求它们流数之间的关系,以及它的逆问题.《流数法和无穷级数》是一部较完整的微积分著作.书的后半部分通过20个问题广泛地介绍了流数法各无穷级数的应用.1676年,牛顿写出了《求曲边形的面积》(1704),在这里,牛顿的微积分思想发生了重大变化,他放弃了微元或无穷小量,而采用了最初比和最后比的方法.

  1687年牛顿发表了它的划时代的科学名著《自然哲学的数学原理》,流数术(即微积分)是其三大发现之一.正如爱因斯坦所说的:“牛顿啊⋯⋯你所发现的道路在你的那个时代是一位具有最高思维能力和创造能力的人所发现的唯一道路,你所创造的概念即使在今天仍然指导着我们的物理学思想”.[4](p.192)

  牛顿生活的时代正是英国发生变化的时代,当时英国发生了国内战争,资产阶级和贵族的阶级妥协,使英国资产阶级革命明显的带上了不彻底性.当时的英国资产阶级正在为现存的剥削阶级的一切上层建筑做永恒存在的论证,因此绝对化的思想成为占统治地位的主导思想,它也影响到当时的自然科学家们把形而上学的思想方法绝对化.牛顿的思想也受到了英国资产阶级革命不彻底性的影响,因而牛顿也往往不能从自然界本身或事物的本身来寻找最初的原因,而借助于外来的推动力.

  牛顿在30岁以前发现了微积分,并建立了经典力学体系,而他的后半生在自然科学的研究上几乎一事无成.这是由于在资本主义产生和形成的时期,资产阶级曾经向宗教神学发起冲击,帮助科学从神学中解放出来.但是当资产阶级的地位巩固以后,阶级斗争逐渐激化之时,资产阶级就逐渐衰退,他们就抓住各种各样的宗教信念作为奴役人民的思想武器.牛顿受其影响很大,其前半生由于自发的唯物主义的思想倾向,使他获得了巨大成就,而后半生则完全沉迷于神学的研究.

  牛顿继承了培根的经验主义传统,特别重视实验和归纳推理的作用,他曾断言,自然科学只能从经验事实出发解释世界.这在当时对打击经院哲学的崇尚空谈、妄称神意来歪曲自然界是起过积极作用的.但是“,牛顿却拘泥于经验事实,片面强调归纳的重要性.只有大量的感性材料,一切停留在事物的现象上,单独依靠归纳的方法是得不出系统的普遍性的理性认识来的.在分析和综合、演绎和归纳的问题上,形而上学使牛顿陷入了矛盾.”[5](p.123)

  二、莱布尼兹所处的时代背景及其哲学思想

  “莱布尼兹(GottfriedWilhelmLeibniz,1646-1716)生于德国.⋯⋯,1672年赴巴黎,在那里接触到惠更斯等一些数学名流,引其进入了数学领域,开始微积分的创造性工作.”[2](p.165)

  1684年莱布尼茨发表了数学史上第一篇正式的微积分文献《一种求极限值和切线的新方法》.这篇文献是他自1673年以来的微积分研究的概括与成果,其中定义了微分,广泛地采用了微分符号dx、dy,还给出了和、差、积、商及乘幂的微分法则.同时包括了微分法在求切线、极大、极小值及拐点方面的应用.两年后,又发表了一篇积分学论文《深奥的几何与不

  变量及其无限的分析》,其中首次使用积分符号“∫”,初步论述了积分(或求积)问题与微分求切线问题的互逆问题.即今天大家熟知的牛顿-莱布尼茨公式∫baf(x)dx=f(b)-f(a),为我们勾画了微积分学的基本雏形和发展蓝图.

  “牛顿建立微积分是从运动学的观点出发,而莱布尼兹则从几何学的角度去考虑,所创设的微积分符号远远优于牛顿符号,并有效地促进了微积分学的发展.”[6](p.120)牛顿发现微积分(1665-1666年)比莱布尼茨至少早了9年,然而莱布尼茨公开发表它的微积分文章比牛顿早3年.据莱布尼茨本人提供的证据说明他是在1674年形成了微分的思想与方法.如果说,牛顿建立微积分主要是从运动学的观点出发,而莱布尼兹则是从哲学的和几何学的角度去考虑,特别是和巴罗的“微分三角形”有密切关系,莱布尼兹称它为“特征三角形”.巴罗的微分三角形对莱布尼兹有着重要启发,对微分三角形的研究,使他意识到求切线和求积问题是一对互逆的问题.莱布尼兹第一个表达出微分和积分之间的互逆关系.

  莱布尼兹的许多研究成果和思想的发展,都包含在从1673年起写的但从未发表过的成百页的笔记中.1673年左右,他看到求曲线的切线的正问题和反问题的重要性,他完全相信反方法等价于通过求和来求面积和体积.1684年,莱布尼兹发表第一篇微分学论文《一种求极大、极小和切线的新方法,它也适用于分式或无理量,以及这种新方法的奇妙类型的计算》,对他以往的研究作了初步整理,叙述了微分学的基本原理,认为函数的无限小增量是自变量无限小变

  化的结果,且把这个函数的增量叫做微分,用字母d表示.1675-1676年间,他从求曲边形面积出发得到积分的概念,给出微积分基本定理∫baf(x)dx=f(b)-f(a).1686年莱布尼兹发表积分学论文《潜在的几何与分析不可分和无限》.1693年,他给出

2020-02-08 13:46:50

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •