来自李守祥的问题
【设集合A={x|x2+2x=0},非空集合B={x|x2+ax+a2-4=0},其中x∈R,如果B⊆A,求实数a的取值范围.】
设集合A={x|x2+2x=0},非空集合B={x|x2+ax+a2-4=0},其中x∈R,如果B⊆A,求实数a的取值范围.
1回答
2020-02-08 12:27
【设集合A={x|x2+2x=0},非空集合B={x|x2+ax+a2-4=0},其中x∈R,如果B⊆A,求实数a的取值范围.】
设集合A={x|x2+2x=0},非空集合B={x|x2+ax+a2-4=0},其中x∈R,如果B⊆A,求实数a的取值范围.
A={x|x2+2x=0}={x|x(x+2)=0}={-2,0},
当B=∅时,△=a2-4(a2-4)<0,解得a>4
33