在直角坐标系xoy中,已知中心在原点,离心率为1/2的椭圆E-查字典问答网
分类选择

来自李冀的问题

  在直角坐标系xoy中,已知中心在原点,离心率为1/2的椭圆E的一个焦点为圆C:x^2+y^2-4在直角坐标系xoy中,曲线C1上的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点

  在直角坐标系xoy中,已知中心在原点,离心率为1/2的椭圆E的一个焦点为圆C:x^2+y^2-4

  在直角坐标系xoy中,曲线C1上的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值.

  (Ⅰ)求曲线C1的方程

  (Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D.证明:当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值.

1回答
2020-02-10 17:57
我要回答
请先登录
何宗键

  (1)设M(x,y)则M到直线的距离为x+2,M到C2距离为根号(x-5)2+y2-3

  两式相等得出C1

  (2)得P(-4,y0),由点斜式设切线为Y-Y0=k(x+4),再由距离公式得出k与Y0的关系——太复杂了

2020-02-10 17:59:18

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •