来自胡月明的问题
解析几何p是椭圆X2/a2+Y2/b2=1上的任意一点且向量OQ=PF1+PF2O为原点F1,F2为焦点求Q的轨迹方程
解析几何
p是椭圆X2/a2+Y2/b2=1上的任意一点且向量OQ=PF1+PF2O为原点F1,F2为焦点求Q的轨迹方程
1回答
2020-02-10 07:18
解析几何p是椭圆X2/a2+Y2/b2=1上的任意一点且向量OQ=PF1+PF2O为原点F1,F2为焦点求Q的轨迹方程
解析几何
p是椭圆X2/a2+Y2/b2=1上的任意一点且向量OQ=PF1+PF2O为原点F1,F2为焦点求Q的轨迹方程
假设F1,F2的坐标分别为F1(c,0),F2(-c,-0),向量PF1={(x-c),(y)},PF2={(x+c),(y)},向量OQ={(2x),(2y)},因此Q点的轨迹满足X2/(2a)^2+Y2/(2b)^2=1,是一个把原来椭圆放大了两倍的椭圆.