来自陶连斌的问题
椭圆X^2/a^2+y^2/b^2=1(a>b>0)上有两点A、B满足OA垂直于OB(O为坐标原点),求证:O到直线AB距离为定值第一问求出来1/OA^2+1/OB^2为定值,为(a^2+b^2)/(a^2b^2)
椭圆X^2/a^2+y^2/b^2=1(a>b>0)上有两点A、B满足OA垂直于OB(O为坐标原点),求证:O到直线AB距离为定值
第一问求出来1/OA^2+1/OB^2为定值,为(a^2+b^2)/(a^2b^2)
1回答
2020-02-10 04:20