来自葛志荣的问题
已知圆C:x2+y2=r2具有如下性质:若M,N是圆C上关于原点对称的两个点,点P是圆C上任意一点,当直线PM,PN的斜率都存在时,记为kPM,kPN,则kPM与kPN之积是一个与点P的位置无关的定值.利用类
已知圆C:x2+y2=r2具有如下性质:若M,N是圆C上关于原点对称的两个点,点P是圆C上任意一点,当直线PM,PN的斜率都存在时,记为kPM,kPN,则kPM与kPN之积是一个与点P的位置无关的定值.利用类比思想,试对椭圆x2a2+y2b2=1写出具有类似特征的性质,并加以证明.
1回答
2020-02-10 09:50