设F1,F2,分别是椭圆E:(X^2/a^2)+(Y^2/b-查字典问答网
分类选择

来自杜卫民的问题

  设F1,F2,分别是椭圆E:(X^2/a^2)+(Y^2/b^2)=1,(a>b>o)的左右焦点,过F1斜率为1的直线I与E相交于A,B两点,且AF2,AB,BF2,成等差数列.求E的离心率;

  设F1,F2,分别是椭圆E:(X^2/a^2)+(Y^2/b^2)=1,(a>b>o)的左右焦点,过F1斜率为1的直线I与E相交于A,B两点,

  且AF2,AB,BF2,成等差数列.求E的离心率;

1回答
2020-02-10 12:37
我要回答
请先登录
葛芝芹

  |F1B|+|F2B|=2a|F1A|+|F2B|=2a所以|AF2|+|AB|+|BF2|=|F1B|+|F2B|+|F1A|+|F2A|=4a依题目的2|AB|=|AF2|+|BF2|所以|AB|=4a/3设l:y=x+cA(x1,y1)B(x2,y2)与:(X^2/a^2)+(Y^2/b^2)=1联立得(a^2+b^2)x^2+2a^2cx+a^2(c^...

2020-02-10 12:39:19

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •