来自蔡相健的问题
设双曲线C1的方程为X^/A^2-Y^2/B^2=1(A>0,B>0),A、B为其左、右两顶点,》》祥题见下设双曲线C1的方程为X^/A^2-Y^2/B^2=1(A>0,B>0),A、B为其左、右两顶点,P是双曲线C1上的任一点,引QB垂直PB,QA垂直PA,AQ
设双曲线C1的方程为X^/A^2-Y^2/B^2=1(A>0,B>0),A、B为其左、右两顶点,》》祥题见下
设双曲线C1的方程为X^/A^2-Y^2/B^2=1(A>0,B>0),A、B为其左、右两顶点,P是双曲线C1上的任一点,引QB垂直PB,QA垂直PA,AQ与BQ相交于点Q.
(1)求Q的轨迹方程
(2)设(1)中所求轨迹为C2,C1、C2的离心率分别为e1、e2,当e2>=根2时,求e2的取值范围
1回答
2020-02-10 14:42