记A=a',B=b'.
设椭圆方程为
X^2/A^2+Y^2/B^2=1.
2X/A^2+2YY'/B^2=0.
Y'=XB^2/(YA^2)是椭圆上点(X,Y)处的切线的斜率.
设椭圆上的点的坐标为(Acost,Bsint)
过点(a,b)和点(Acost,Bsint)的直线斜率为(Bsint-b)/(Acost-a).
则应有
-1=(Bsint-b)/(Acost-a)*[AcostB^2/(BsintA^2)]
=Bcost(Bsint-b)/[Asint(Acost-a)],
0=Asint(Acost-a)+Bcost(Bsint-b)
=A^2sintcost-aAsint+B^2costsint-bBcost
=(A^2+B^2)sintcost-(aAsint+bBcost)
进一步,
设
k=A/B=a/b,
0=A^2(1+k^2)sintcost-aA(sint+k^2cost),
0=A(1+k^2)sintcost-a[sint+k^2cost],
ak^2cost=sint[A(1+k^2)cost-a],
sint=ak^2cost/[A(1+k^2)cost-a],
1={cost}^2+{ak^2cost/[A(1+k^2)cost-a]}^2,
[A(1+k^2)cost-a]^2=[A(1+k^2)cost-a]^2[cost]^2+[ak^2cost]^2,
如果能解出满足上面这个方程的t,
就找到了你要的直线了.俺解不出来~~~.