来自刘林海的问题
已知x^2+y^2=4,求2xy/x+y-2的最小值2xy/(x+y-2)
已知x^2+y^2=4,求2xy/x+y-2的最小值
2xy/(x+y-2)
1回答
2020-02-14 01:03
已知x^2+y^2=4,求2xy/x+y-2的最小值2xy/(x+y-2)
已知x^2+y^2=4,求2xy/x+y-2的最小值
2xy/(x+y-2)
楼上全错,正确的如下:已知x²+y²=4,求2xy/(x+y-2)的最小值.由于(x-y)²≥0,展开得:2xy≤x²+y²,则有:x²+y²+2xy≤2(x²+y²)(x+y)²≤2(x²+y²)=8得:-2√2...