(1/sinα)*cosα=tanα类似于这种公式多帮我弄几-查字典问答网
分类选择

来自李小蓉的问题

  (1/sinα)*cosα=tanα类似于这种公式多帮我弄几个要对的

  (1/sinα)*cosα=tanα

  类似于这种公式多帮我弄几个

  要对的

1回答
2020-02-29 13:32
我要回答
请先登录
黄泽宁

  错了!是不是打反了?

  参看:)

  正弦函数sinθ=y/r

  余弦函数cosθ=x/r

  正切函数tanθ=y/x

  余切函数cotθ=x/y

  正割函数secθ=r/x

  余割函数cscθ=r/y

  以及两个不常用,已趋于被淘汰的函数:

  正矢函数versinθ=1-cosθ

  余矢函数vercosθ=1-sinθ

  同角三角函数间的基本关系式:

  ·平方关系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  ·积的关系:

  sinα=tanα*cosαcosα=cotα*sinα

  tanα=sinα*secαcotα=cosα*cscα

  secα=tanα*cscαcscα=secα*cotα

  ·倒数关系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  三角函数恒等变形公式:

  ·两角和与差的三角函数:

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  ·辅助角公式:

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  ·倍角公式:

  sin(2α)=2sinα·cosα

  cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan(2α)=2tanα/[1-tan^2(α)]

  ·三倍角公式:

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  ·半角公式:

  sin^2(α/2)=(1-cosα)/2

  cos^2(α/2)=(1+cosα)/2

  tan^2(α/2)=(1-cosα)/(1+cosα)

  tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

  ·万能公式:

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

  ·积化和差公式:

  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

  ·和差化积公式:

  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

  ·其他:

  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及

  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

  部分高等内容

  ·高等代数中三角函数的指数表示(由泰勒级数易得):

  sinx=[e^(ix)-e^(-ix)]/2

  cosx=[e^(ix)+e^(-ix)]/2

  tanx=[e^(ix)-e^(-ix)]/[^(ix)+e^(-ix)]

  泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…

  此时三角函数定义域已推广至整个复数集.

  ·三角函数作为微分方程的

  对于微分方程组y=-y'';y=y'''',有通解Q,可证明

  Q=Asinx+Bcosx,因此也可以从此出发定义三角函数.

  补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣.

2020-02-29 13:33:55

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •