【定义在R上的函数f(x),对任意的实数x,y,恒有f(x)-查字典问答网
分类选择

来自金荣得的问题

  【定义在R上的函数f(x),对任意的实数x,y,恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0.又f(1)=-2/3(1)求证,f(X)是奇函数(2)求证:f(x)在R上是减函数(3)求函数f(x)在【-3,3】上】

  定义在R上的函数f(x),对任意的实数x,y,恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0.又f(1)=-2/3

  (1)求证,f(X)是奇函数

  (2)求证:f(x)在R上是减函数

  (3)求函数f(x)在【-3,3】上的值域(主要是求出解析式很重要

1回答
2020-02-29 15:33
我要回答
请先登录
马广富

  (1)在恒等式f(x)+f(y)=f(x+y),x,y∈R中,

  令x=y=0,得f(0)=0,

  再令y=-x,由f(0)=0,

  得f(x)+f(-x)=0,即f(-x)=-f(x)

  ∴f(x)为R上的奇函数.

  (2)设x1,x2∈R,且x1=x2+△x,(△x>0),

  则x1>x2,

  由f(x)为R上的奇函数及恒等式可知,

  f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2)=f(△x)

  ∵已知当x>0时,f(x)0,

  ∴f(△x)

2020-02-29 15:37:49

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •