【排列组合箱子里有52个不同编号的球,其中,金色球6个,黑球和白球各4个,红球、紫球、粉球、绿球各3个,其他杂颜色的球26个。现在从箱子里面抽球,抽完作登记再把球放回箱子继续抽,】
排列组合
箱子里有52个不同编号的球,其中,金色球6个,黑球和白球各4个,红球、紫球、粉球、绿球各3个,其他杂颜色的球26个。现在从箱子里面抽球,抽完作登记再把球放回箱子继续抽,也就是保持箱一直有52个编号的球。
问题1:请问按机率要抽多少次,才能抽出金色的6个不同编号的球。
问题2:请问按机率要抽多少次,才能抽出金色的6个不同编号的球或者黑色的4不同编号的球或者白色的4不同编号的球。
问题3:请问按机率要抽多少次,才能把金色球或黑球或白球或红球或紫球或粉球或绿球各这种有三个以上的球的颜色抽出来一种(类似问题2)
我的解答:
问题1:先抽金色球6个中的一个,机率为6/52,再抽另外5个中的一个,机率为5/52,依次类似推,最后的结果为6*5*3*2*1/52的6次方,但是这个算法好像不对。。。
问题1:先抽金色球6个中的一个,机率为6/52,再抽另外5个中的一个,机率为5/52,依次类似推,最后的结果为1/(52/6+52/5+52/4+52/3+52/2+52/1)=1/127.4
问题2:这个不会了。。