定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(-查字典问答网
分类选择

来自马争鸣的问题

  定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;(3)已知f(x)是R

  定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),

  (1)求证:f(0)=1;

  (2)求证:对任意的x∈R,恒有f(x)>0;

  (3)已知f(x)是R上的增函数,若f(x)•f(2x-x2)>1,求x的取值范围.

1回答
2020-03-04 08:07
我要回答
请先登录
梁景怡

  (1)令a=b=0,则f(0)=[f(0)]2∵f(0)≠0∴f(0)=1(2)令a=x,b=-x,则 f(0)=f(x)f(-x)∴f(-x)=1f(x)由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0∴f(x)=1f(-x)>0又x=0时,f(0...

2020-03-04 08:09:18

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •