1.∵A、B是锐角
∴cosA=√[1-(sinA)^2]=2√5/5,cosB=√[1-(sinB)^2]=3√10/10
cos(A+B)=cosAcosB-sinAsinB=√2/2
A+B=45º
2.sinA+cosA=√2sin(A+π/4)=tanA
∵0<A<π/2
∴π/4<A+π/4<3π/4
则√2/2<sin(A+π/4)<1
∴1<tanA<√2
π/4<tanA<arctan√2,约为(π/4,π/3),选C
3.tan(A-B)=(tanA-tanB)/(1+tanA*tanB)
1-[(tanA-tanB)/(1+tanA*tanB)]/tanA=(sinC)^2/(sinA)^2
[(tanA)^2*tanB+tanB]/[tanA(1+tanA*tanB)]=(sinC)^2/(sinA)^2
tanB*(secA)^2/tanA(1+tanA*tanB)=(sinC)^2/(sinA)^2,(其中1+tan^2A=sec^2A)
tanB*(secA)^2*(sinA)^2=tanA(1+tanA*tanB)*(sinC)^2
tanB*tanA=(1+tanA*tanB)*(sinC)^2,(两边除以tanA)
(tanB*tanA+1)-1=(1+tanA*tanB)*(sinC)^2
1-1/(1+tanA*tanB)=(sinC)^2
1-(sinC)^2=1/(1+tanA*tanB)
(cosC)^2=1/(1+tanA*tanB)
1/(secC)^2=1/(1+tanA*tanB)
(secC)^2=1+tanA*tanB
(secC)^2-1=tanA*tanB
(tanC)^2=tanA*tanB
4.原式=[sinAcos(π/6)+cosAsin(π/6)]^2+[sinAcos(π/6)-cosAsin(π/6)]^2-(sinA)^2
=[(√3/2)sinA+(1/2)cosA]^2+[(√3/2)sinA-(1/2)cosA]^2-(sinA)^2
=3(sinA)^2/2+(cosA)^2/2-(sinA)^2=1/2*[(sinA)^2+(cosA)^2]
=1/2
5.①原式=2sin20°cos20°cos40°cos80°/4sin20°
=sin40°cos40°cos80°/4sin20°
=sin80°cos80°/8sin20°
=sin160°/16sin20°
=sin(180°-20°)/16sin20°
=1/16
②原式=sin(90°-24°)sin(90°-48°)sin6°sin(90°-12°)
=cos24°cos48°sin6°cos12°
=2sin6°cos6°cos12°cos24°cos48°/2cos6°
=sin12°cos12°cos24°cos48°/2cos6°
=sin24°cos24°cos48°/4cos6°
=sin48°cos48°/8cos6°
=sin96°/16cos6°
=1/16
③原式=sin67.5°/cos67.5°-sin22.5°/cos22.5°
=cos22.5°/sin22.5°-sin22.5°/cos22.5°
=[(cos22.5°)^2-(sin22.5°)^2]/(sin22.5°*cos22.5°)
=cos45°/[(1/2)*sin45°]
=2
④原式=1/2*[cos(5π/12+π/12)+cos(5π/12-π/12)]
=1/2*[cos(π/2)+cos(π/3)]
=1/2*[0+1/2]
=1/2*1/2
=1/4
6.原式=[(1+sinA-cosA)^2+(1+sinA+cosA)^2]/(1+sinA+cosA)(1+sinA-cosA)
展开,整理后=4(1+sinA)/2sinA(sinA+1)
=2/sinA
7.sin(π/4+A)sin(π/4-A)=(-1/2){cos[(π/4+A)+(π/4-A)]-cos[(π/4+A)-(π/4-A)]}
=(-1/2)[cos(π/2)-cos2A]=(1/2)cos2A=1/6
cos2A=1/3
∵π/2<A<π
∴π<2A<2π
sin2A=-√[1-(cos2A)^2]=-2√2/3
sin4A=2sin2A*cos2A=-4√2/9
8.tan2B=2tanB/1-(tanB)^2=3/4
tan(A+2B)=(tanA+tan2B)/(1-tanAtan2B)=1
∵A、B都为锐角
∴A+2B∈(0,270°)
A+2B=45°或A+2B=225°
9.原式=(1-cos40°)/2+(1+cos160°)/2+√3/2*(sin100°-sin60°)
=1+(cos160°-cos40°)/2+√3/2*sin100°-3/4
=1-sin[(160°+40°)/2]*sin[(160°-40°)/2]+√3/2*sin100°-3/4
=1-sin100°sin60°+√3/2*sin100°-3/4
=1/4
10.原式=[2sin50°+sin10°(cos10°+√3sin10°)/cos10°]×√2sin80°
=[2sin50°cos10°+2sin10°(cos60°cos10°+sin60°sin10°)×√2sin80°/cos10°
=2[sin50°cos10°+sin10°cos(60°-10°)]×√2
=2sin(50°+10°)×√2