来自秦瑞锋的问题
用归纳法证明:想(1)x>=-1,n>=1,(1+n)^n>=1+nx(2)2^n>=n^2(n>=5)
用归纳法证明:想(1)x>=-1,n>=1,(1+n)^n>=1+nx(2)2^n>=n^2(n>=5)
6回答
2020-03-07 07:44
用归纳法证明:想(1)x>=-1,n>=1,(1+n)^n>=1+nx(2)2^n>=n^2(n>=5)
用归纳法证明:想(1)x>=-1,n>=1,(1+n)^n>=1+nx(2)2^n>=n^2(n>=5)
1,(1+n)^n应该是,(1+x)^n吧
当n=1时候等号成立
假设n=k,等号成立,即有,(1+x)^k>=1+kx
当n=k+1时,
(1+x)^(k+1)=,(1+x)^k*(1+x)>=(1+kx)(1+x)=1+kx+x+kx^2》1+(k+1)x
成立
2.当n=5时,成立,假设n=k成立2^k>=k^2
当n=k+1时,2^k+1=2*2^k>=2k^2=k^2+2k+1+k^2-2k-1考虑函数k^2-2k-1,因为在5到正无穷是增函数,所以它的最小值是14大于0所以
k^2+2k+1+k^2-2k-1》k^2+2k+1=(k+1)^2
即n=k+1也成立
是(1+n)^n,没错
放他妈来屁,取x=10000,明显当n取1,2,3,4,5,6。。。。。。这个不等式都不成立还证明个毛
教科书上就是那么些的,教授也没说错
书是盗版的,教授是冒牌的
.......书是绝对正版的,教授也没问题