(4x+1)(3x+1)(2x+1)(x+1)=3x^4
(x+1)(4x+1)(2x+1)(3x+1)=3x^4
(4x^2+5x+1)(6x^2+5x+1)=3x^4
(5x^2+5x+1-x^2)(5x^2+5x+1+x^2)=3x^4
(5x^2+5x+1)^2-x^4=3x^4
(5x^2+5x+1)^2-4x^4=0
(5x^2+5x+1-2x^2)(5x^2+5x+1+2x^2)=0
(5x^2+5x+1-2x^2)=0,(5x^2+5x+1+2x^2)=0
(5x^2+5x+1-2x^2)=0
3x^2+5x+1=0
x=(-5+,-根号13)/6
(5x^2+5x+1+2x^2)=0
7x^2+5x+1=0
此方程无解,舍去.
所以x=(-5+,-根号13)/6
x^5+2x^4-5x^3+5x^2-2x-1=0
(x^5-1)+2x(x^3-1)-5x^2(x-1)=0
(x-1)(x^4+x^3+x^2+x+1+2x^3+2x^2+2x-5x^2)=0
(x-1)(x^4+3x^3-2x^2+3x+1)=0
(x-1)(x^4-x^3+x^2+4x^3-4x^2+4x+x^2-x+1)=0
(x-1)(x^2-x+1)(x^2+4x+1)=0
又x^2-x+1>0
故x-1=0或x^2+4x+1=0
解得x1=1,x2=-2±√3
令t=x+2+x-42=x-1,则x=t+1
则原方程转化为(t+3)4+(t-3)4=272⇒(t2+6t+9)2+(t2-6t+9)2-272=0⇒[(t2+6t+9)-(t2-6t+9)]2+2[(t2+9)+6t][(t2+9)-6t]-272=0⇒(12t)2+2[(t2+9)2-36t2]-272=0⇒144t2+2t4+36t2+162-72t2-272=0⇒t4+54t2-55=0⇒(t2-1)(t2+55)=0
∵t^2+55≠0
∴只能是t2-1=0,即t=1或-1
当t=1时,x=1+1=2
当t=-1时,x=-1+1=0
∴原方程的解是x=2或0
左边分解因式得(x+a+1)(x^2-3x-a+2)=0,
判别式=9-4(-a+2)=4a+1,
所以
(1)当a1/4时,方程有三解x1=-a-1,x2=[3-√(4a+1)]/2,x3=[3+√(4a+1)]/2.