来自李元首的问题
4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()A.12种B.24种C.30种D.36种
4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()
A.12种
B.24种
C.30种
D.36种
1回答
2020-03-10 12:11
4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()A.12种B.24种C.30种D.36种
4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()
A.12种
B.24种
C.30种
D.36种
由题意知本题是一个分步计数问题,
∵恰有2人选修课程甲,共有C42=6种结果,
∴余下的两个人各有两种选法,共有2×2=4种结果,
根据分步计数原理知共有6×4=24种结果
故选B.