来自计智伟的问题
【求|x-1|+|x-2|+|x-3|+...+|x-100|取得最小值时,x=?】
求|x-1|+|x-2|+|x-3|+...+|x-100|取得最小值时,x=?
1回答
2020-03-10 21:45
【求|x-1|+|x-2|+|x-3|+...+|x-100|取得最小值时,x=?】
求|x-1|+|x-2|+|x-3|+...+|x-100|取得最小值时,x=?
可以认为是数轴上一点x到点:1、2、3、.、100的距离和为最小,
可知:
当数轴上有奇数个点时,x在中间的一点时,到各点的距离和最小;
当数轴上有偶数个点时,x在中间二点的中点时,到各点的距离和最小;
本题可以看作数轴上有100个点,所以x应在50到51的中间时距离和最小,所以当x=50.5时距离和最小.
则有最小值
S=|x-1|+|x-2|+...+|x-100|
=|50.5-1|+|50.5-2|+.+|50.5-50|+|50.5-51|+.+|50.5-100|
=(50.5-1+50.5-2+...+50.5-50)+(51-50.5+...+100-50.5)
=(50.5-1+51-50.5)+(50.5-2+52-50.5)+...+(50.5-50+100-50.5)
=50+50+50+...+50
=50×50
=2500