来自唐逸的问题
高数的一道中值定理证明题不管b取何值,方程x(立方)-3x+b=0在区间[-1,1]上之多有一个实根
高数的一道中值定理证明题
不管b取何值,方程x(立方)-3x+b=0在区间[-1,1]上之多有一个实根
1回答
2020-03-11 00:48
高数的一道中值定理证明题不管b取何值,方程x(立方)-3x+b=0在区间[-1,1]上之多有一个实根
高数的一道中值定理证明题
不管b取何值,方程x(立方)-3x+b=0在区间[-1,1]上之多有一个实根
首先,一元三次代数方程一定有实数根.
其次,设f(x)=x^3-3x+b,f'(x)=3x^2-3.当x∈(-1,1)时,f'(x)<0,即f(x)在[-1,1]上单调减少.
所以方程x^3-3x+b=0在区间[-1,1]上至多有一个实根